欣雅小说 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

伴随着时间的流逝,徐川公开到Arxiv上的论文,在学术界中的的争论也是愈来愈激烈。

由于删减了一些东西的关系,导致这篇论文在学术界中并没有像以往一般发出来就让人或者说让大部分人直接信服。

有不少人觉得论文中有不少的地方那位徐教授只给出了结果,却缺少了一些必要的论证,觉得论文的正确性有待商榷。

毕竟结果虽然重要,但对于科学尤其是理论这种来说,论文的论证过程更重要。

缺少了论证过程

也有不少人相信这篇论文会给化学界,尤其是电化学界带来一个全新的未来。

至于论文中那些缺少必要论证,只直接给出了结果的地方,他们给出了一个很巧妙的解释方法。

正如1859年黎曼向柏林科学院提交的那篇《论小于给定数值的素数个数》的论文一般,黎曼在文章中给出了众多的论证结果,但却省略了那些论证的证明过程。

这也导致了他那些“证明从略”的地方有些花费了后世数学家们几十年的努力才得以补全,有些甚至直到今天仍是空白。

而在徐川教授的论文中,也有着异曲同工之处。

不少人相信这些被忽略了的地方那位徐教授心里是已经有答案的,只不过或许是他对化学不感兴趣,亦或者是他觉得这些东西太简单了,没必要写出来。

学术界的争论不休,让越来越多的学者关注到了这篇论文。

而针对这篇论文,《Science》期刊的编辑找到了13年的诺贝尔奖化学奖得主,哈佛大学的马丁·卡普拉斯教授。

如果说在化学界还有哪位学者最有可能率先弄懂徐教授的论文的话,那必然是他了。

卡普拉斯教授主要研究是在核磁共振谱学、化学动态学、量子化学和生物大分子的分子动力学模拟方面。

因给复杂化学体系设计了多尺度模型,提出了有关耦合常数和二面角之间关系的卡普拉斯方程而获得了13年的化学奖。

如果说徐川的论文或许可能完全打开电化学微观层面量子理论解释的大门。

那么由卡普拉斯教授设计复杂化学多尺度模型则是经典物理与量子物理学两大领域的联合,就是最初给这道微观层面的大门打开了一丝缝隙的人。

包括徐川在研究电化学微观层面量子理论的时候,也研究和应用了不少卡普拉斯教授的理论。

《Science》:“卡普拉斯教授您好,我想请问一下,您是怎么看待那位徐川教授最近公开在arxiv上的《电化学的微观实质反应量子理论及锂空气电池机制探索》这篇论文的呢?”

马丁·卡普拉斯沉吟了一下:“这是一篇相当精彩,精髓的论文,它在一定程度上解释了电化学反应的微观变化,并且创造了一份完善的量子化学理论,将电化学的反应过程全部概括了进去。”

《Science》编辑:“您认为他是对的?”

卡普拉斯:“对于这篇论文是否正确,我无法给出答案。不过从个人的角度上来说,我很看好它。”

“它解决了我心中很多的疑惑,回答了我不少在电化学领域的问题。不过至今我仍然没能完全弄懂这篇论文,且对于其中一些结论有着不解。”

“我不知道徐教授到底是怎么得到这些结论的,因为他在论文中省略掉了不少本应该写上的论证过程。这让我很是困惑。”

“如果可以,我很希望他能够召开一场报告会,对这篇论文进行一个整体的讲解,哪怕是报告会在华国举办,我也一定会乘坐飞机过去。”

“相信这也是化学界所有人的希望。”

《Science》编辑:“您很看好徐教授,对吗?”

卡普拉斯点了点头,道:“是的,如果要说当今学术界最让我敬佩的人,那么徐教授绝对是其中之一,甚至能排到首位。”

“他是一个极其善于创造奇迹的学者,可以说以一己之力拉动了数学、物理、化学、天文学等诸多学科,乃至整个人类文明的进步。”

“早在数年前,在锂电池领域,他就通过一张人工SEI薄膜,解决了锂离子电池中困扰了全世界几十年的难题。”

“而如今,在电化学领域,他又给我们带来一篇足够指引方向的论文。在我看来,即便是这篇论文最终无法解释电化学反应的微观变化,它也足够在这条路上引领我们前进一大段的距离了。”

《Science》编辑:“在论文的结尾,那位徐教授引入对锂空气电池机制的探索讨论,我想问问您怎么看到这一点?他能否解决锂空气电池一直以来的难题呢?”

卡普拉斯沉思了一会,回道:“这个问题我没法给你答案,锂空气电池的问题存在了几十年了,并不是那么轻易就能解决的。“

“不过,从论文来看,他对于锂电池,或者说对于电化学的研究,不说已经超过了当今所有的化学家,也超过了百分之九十九以上的学者。”

“或许你可以去问问他,他说不定能给你答案。”

《Science》编辑:“您觉得很难做到吗?”

卡普拉斯:“很难,但我也说了,徐教授是一个善于创造奇迹的学者。依据这篇论文,或许他已经有了一些思路和方向也说不定。”

这章没有结束^.^,请点击下一页继续阅读!

喜欢大国院士请大家收藏:(www.xinyaxs.com)大国院士欣雅小说更新速度全网最快。

欣雅小说推荐阅读: 重生79之我在美国开银行重回八二年从零开始建立穿越者联盟就没人能杀死我吗?别搞我,我只想摆烂我慕容复,只想修仙!北阴大圣上医至明我是导演,我不比烂说好吹牛逼,你咋真有大帝之资武林帝国南北往事踹了白切黑影帝后,我翻车了捡到一本西游记从零开始打造救世组织五年县令,亿斤粮震惊李世民一身孤注掷温柔木叶:从被纲手领养开始登月之后这个明星不加班贤妻的诱惑日本异闻录漫威从憎恶开始进化绝代双骄半岛演员祸种回村之山水田园你好,闪婚先生双斗破对比:谁说主角需要逆袭?御兽厨王重筑2005宽怀:人生幸福哲学课宫檐大燕第一宠都市:西虹大佬人在超神,开局化身原神雷神影我的替身是史蒂夫从科西嘉到第四罗马奶爸学园长生武道:从太极养生功开始我在荒岛肝属性四合院从傻柱身死开始功夫萌崽四岁半,17个哥哥团宠我三国之刘备崛起武道长生从内丹术开始巫师世界的永生者武神从七十二绝技开始海岛超凡大领主属性无限暴涨,我横压多元斗破之平凡人生
欣雅小说搜藏榜: 重生79之我在美国开银行百世飞升从逆练辟邪开始黑寡妇靠种田成为首富万族之劫之我是白枫魏晋干饭人虫族在晶壁系世界御刃者之心全球废土:随身携带工作台救命!亿万影后她被妖帝搞破产了傅律,别嘴硬皇宫里的妖精好上头明末流贼模拟器农门锦绣,神匠三岁半锦鲤小可怜被三界大佬团宠后纽约超级神医镇武天下:开局召唤宇文成都穿越东京泡沫时代海贼:古伊娜的全新人生就没人能杀死我吗?开局国王,我成了蓝衣军团的新王慕容复纵横斗罗穿成兽世小白虎后成团宠重生后我嫁了死对头他弟一切从大唐双龙开始大明:不装了,我是穿越者大明,长生以后四合院风云黑心大佬在末日发家致富LOL:我们是冠军!佛门世尊,授徒满级返还玉色生香华娱之顶流进化论士家三国窥神我在兽世种田开荒搬空敌国成大佬开局获得天赋面板废帝重生:朕即国家!无敌从全职法师开始长生从坟头长草开始小桂子,你一个太监修阳神?美漫大超从生化危机开始的诸天漫威:神矛局技术顾问精灵:佛系训练家全人类缩小一百倍LOL:是谁让他打职业的!开局当备胎,舔狗基金五千亿聊斋仙官:我有一座长生福地重生腾飞时代
欣雅小说最新小说: 大明:哥,和尚没前途,咱造反吧我的模拟长生路影视从四合院阎解成开始足坛之优雅的兽腰重生之神级操盘手骑砍战记凡人:我,厉飞雨,属性修仙!警察陈书文娱之顶流艺术家逃荒不慌,她成了各位大佬的干娘长生仙路四合院的自在日子穿成农家辣妻,带崽养夫种田忙如此堕怠,怎能成仙贵妃她娇又媚,疯批暴君拿命宠吾家阿囡我有一本万世书我怎么还活着?我的金融科技帝国大小姐她总是不求上进战争领主:从厄运之地开始崛起催泪系导演凡人:开局夺舍墨居仁战锤:以灰烬之名温教授,你家的小作精她甜又野四合院:采购员的悠闲生活恋爱从游戏情缘开始天灾:囤满亿万物资后我躺赢了精灵:开局捡到重生伊布直视古神一整年吞噬进化:我重生成了北极狼从海贼开始万界模拟我写的设定能改变现实奉天承运,斩妖除魔我被霍格沃茨开除了?此间的男神锋线潇洒哥诸天从影视剧开始模拟器:开局天赋软饭硬吃苦境:原来我是反派卧底我解锁了英雄图鉴疯了吧,你管这叫检察官惊!嫡长女她撕了豪门炮灰剧本我用副职加天赋神父马维把女上司拉进红颜群,我被曝光了我将白玫瑰藏于身后我在诡异世界谨慎修仙吞噬星空:从武者实战考核开始我为红楼来